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ABSTRACT: The crystal and magnetic structures of anti-
perovskite compounds Mn3SnC, Mn3Sn0.95C0.9, and
Mn3Sn0.93Si0.07C0.94 were studied as a function of temperature
and magnetic field by neutron powder diffraction. For
Mn3SnC, the magnetic field induces a dramatic variation of
antiferromagnetic moment and lattice parameter. Because of
this spin−lattice coupling, the “square” antiferromagnetic
(AFM) structure plays a key role in inducing a negative
thermal expansion in the material. Moreover, the thermal
expansion parameter is closely related to the rate of change of
the AFM moment, which can be controlled by introducing
vacancies or by doping. The variations of the AFM moment and lattice parameter in Mn3SnC with magnetic field make it
possible to use the tunable properties for technical applications.

■ INTRODUCTION

Recently many fascinating physical properties have been found
in the antiperovskite compounds, such as superconductivity,1,2

magnetoresistance,3−5 and the nearly zero temperature
coefficient of resistivity (NZ-TCR).6−10 Some of these
properties are closely associated with their magnetic structure.
For example, the negative thermal expansion (NTE) behavior
of Ge-doped Mn3AN (A = Cu, Zn, Ga) is closely related to its
antiferromagnetic structure,11−13 which is different from other
types of NTE materials, such as PbTiO3-based compounds14 or
NaZn13-type La(Fe, Si, Co)13 compounds.15 The large
magnetic entropy change of Mn3GaC originates from the
transition from antiferromagnetic (AFM) to ferromagnetic
(FM) under magnetic field.16−19 Wang et al.20 reported that
Mn3SnC had a magnetic entropy change of −ΔSm = 133 mJ/
cm3 K (corresponding to 17 J/kg K) under a magnetic field of
4.8 T.20 According to the results of neutron diffraction, the
magnetic ground state of Mn3SnC is a ferrimagnetic (FIM)
state.21 The detailed relationship between the magnetic
structure and these properties is still not clear in Mn3SnC.
In Mn3CuN, which has the same magnetic structure as

Mn3SnC, the magnetic structure can be changed from the
superlattice magnetic structure (propagation vector k = (1/2 1/
2 0))21 to the Γ5g-type antiferromagnetic structure (k = (0 0
0)).22−24 References 22−24 present the local lattice distortion
and the Γ5g-type antiferromagnetic structure in Mn3Cu1−xGexN
as key factors that trigger the large NTE.22−24 In addition, it has
been inferred that the Mn site occupancy affects the rate of the

magnetic ordering with temperature, which controls the
amount and rate of NTE with temperature in
Mn3−xCu0.5Ge0.5N.

25 The effect of vacancies and doping on
the magnetic structure and their transitions has also been found
in Mn3ZnxN, which induced the change from NTE to zero
thermal expansion (ZTE) behavior around the magnetic
transition. Moreover, the NTE effect could be tuned by the
size of the ordered moment in Mn3ZnN.

26

Mn3SnC has the same magnetic structure as Mn3CuN.
21

However, Mn3SnC shows a sharp abnormal thermal expansion
around the magnetic transition temperature, whereas Mn3CuN
exhibits normal thermal expansion behavior.21,27 In addition,
the NTE effect gradually disappeared with increasing content of
Ge in Mn3Sn1−xGexC.

28 It is contrary to the result in Mn3CuN.
To clarify this discrepancy, we investigated the relation

between the magnetic structure and lattice in Mn3SnC. We
studied the evolutions of the lattice and magnetic structure
driven by the temperature or the magnetic field. The magnetic
structure and negative thermal expansion behavior could be
tuned by doping and introducing vacancies. Herein, the relation
between the magnetic structure and lattice of Mn3Sn1−εSiεC1−δ

will be discussed in detail.
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■ EXPERIMENTAL SECTION

Polycrystalline samples with nominal compositions of Mn3SnC,
Mn3SnC1.1, and MnSn0.8Si02C were prepared by a solid-state
reaction in vacuum (10−5 Pa) using Mn, Sn, and Si with purity
of 99.95% and spectroscopic grade carbon powders as starting
materials. These materials were mixed in stoichiometric
proportion and pressed into pellets. The pellets were wrapped
in a tantalum foil, sealed in vacuum in a quartz tube, sintered at
800 K for 100 h, and then cooled to room temperature. The
procedure was repeated until a pure single phase was obtained.
Neutron powder diffraction (NPD) data were collected using

the BT-1 high-resolution neutron powder diffractometer at
NIST Center for Neutron Research (NCNR). A Cu (311)
monochromator was used to produce monochromatic neutron
beam with wavelength of 1.5403 Å. Neutron diffraction data
were collected at various temperatures of interest in the range
of 4−300 K to determine the crystal and magnetic structures by
Rietveld refinement using the GSAS program,29 to elucidate the
magnetic transitions and thermal expansion properties. The
neutron scattering lengths used in the refinement were −0.375,
0.623, 0.665, and 0.415 (× 10−12 cm) for Mn, Sn, C, and Si,
respectively.
The NPD patterns at room temperature could be fit well

with a structure model of cubic symmetry which has space
group Pm3̅m (No. 211) and the following atomic positions:
Mn, 3c (1/2, 1/2, 0); Sn/Si, 1a (0 0 0); and C, 1b (1/2,1/2,1/
2). The site occupancies of the atoms Mn, Sn, and C were
investigated in detail, and the refinement results indicated that
the real compositions of the polycrystalline samples Mn3SnC,
Mn3SnC1.1, and MnSn0.8Si02C are often deficient in the cubic
corners and body-centered sites. The refined compositions
were determined to be Mn3Sn0.95(1)C0.9(1), Mn3SnC1.00(1) and
Mn3Sn0.93(4)Si0.07(4)C0.94(1), respectively, and subsequently in
this article we will use these refined compositions unless
explicitly indicated otherwise. A small amount of MnO, along
with other impurities that could not be identified, was found in
the Mn3Sn0.95C0.9 and Mn3Sn0.93Si0.07C0.94 samples.
For Mn3SnC, to clarify the relationship between the entropy

change and structure, we also measured the total entropy
change during the phase transition, the magnetic entropy
change, and the NPD data under magnetic field. To eliminate
preferred orientation of powder sample under magnetic field,
we pressed the powder into pellets again. According to the
NPD data under magnetic field, we did not find any preferred
orientation of Mn3SnC. A differential scanning calorimeter
(DSC) was used to measure the crystal and/or magnetic phase
transformation and to calculate the transition entropy change of
Mn3SnC. The temperature dependence of the magnetization
was measured between 10 and 350 K under magnetic field of
0.01 T using a superconducting quantum interference device
(SQUID) magnetometer. The measurement was conducted
under field cooling conditions. A set of magnetization
isotherms M(H) at selected temperatures near the phase
transition temperature was measured, and the magnetic entropy
change was calculated using the Maxwell equation.

■ RESULTS AND DISCUSSION

First, we analyze the crystal and magnetic structure of Mn3SnC.
Figure 1a shows the crystal structure of Mn3SnC. The cubic
lattice constant of Mn3SnC is 3.99379 Å at 300 K. The Rietveld
refinements were conducted based on the Pm3̅m model. The
refinement results of nominal composition Mn3SnC1.1 indicate

that all the crystallography sites were nearly fully occupied;
therefore, the corresponding formula is Mn3SnC. Figure 1b
shows the magnetic structure of Mn3SnC, consistent with that
reported in reference 21. The propagation vector k = (1/2 1/2
0) corresponds to an anisotropic magnetic model. The
parameters of the magnetic model along the x, y, and z axes
are aM = √2a, bM = √2a, cM = a (a is the lattice parameter of
the nuclear structure, aM, bM, and cM are magnetic cell
parameters), respectively. The Mn atoms of the superlattice
magnetic model are located at three different types of sites of
the P4 space group: Mn1 1a (0 0 0), Mn2 1b (0.5 0.5 0) and
Mn3 4d (0.25 0.25 0.5). Arrows indicate the ordered Mn
moment components at these sites. We label the magnetic
modelM1. In this model moments for the Mn3 atoms at the z =
0.5 plane have components with a “square” antiferromagnetic
arrangement in the plane and ferromagnetic components in the
cM direction perpendicular to the plane, that is, forming a
canted antiferromagnetic arrangement. The moments for the
Mn1 and Mn2 atoms on the z = 0 plane have only a
ferromagnetic component in the cM direction. This model was
used to refine the magnetic structure for data collected at
different temperature.
Figure 2a,b shows the neutron powder diffraction data and

the Rietveld refinement results for Mn3SnC at 300K and 15 K,
respectively. The diffraction peaks from the Al sample holder
were excluded in the analysis. At 300 K, the paramagnetic (PM)
state with cubic structure is refined. There are some magnetic
peaks appearing at 15 K, as shown in Figure 2b. We fit these
magnetic reflections using the superlattice magnetic model M1.
The refined antiferromagnetic moment is 2.69(3) μB and the
ferromagnetic components are 0.29(22) μB for Mn3, and a
ferromagnetic moment 0.9(2) μB for Mn1 and Mn2 at 15 K. To
identify the ferromagnetic peaks, we plot the difference
between observed and calculated intensities (Iobs − Icalc) fit
by the nuclear-only structure (bottom solid line) and the
difference fit by the combined magnetic and nuclear structures
(top solid line) in Figure 2c. Comparing the top line with the
bottom line in Figure 2c, the magnetic peaks are identified in
the bottom line. On the basis of these results, the ferromagnetic
peak (1/2 1/2 0) at the nuclear (100) peak position was
confirmed.
Figure 3a displays the temperature dependence of the

magnetization and inverse susceptibility of Mn3SnC. The onset
temperature of the transition (Tc) from the paramagnetic to the
ordered ferrimagnetic state is 283 K. The 1/χ(T) curve labeled
by the right axis of Figure 3a indicates the FIM characteristics
of Mn3SnC. Furthermore, we measured the magnetization

Figure 1. (a) Crystal structure of Mn3SnC, space group Pm3̅m (No.
211), atomic positions Mn: 3c, Sn/Si: 1a, C: 1b. (b) Magnetic
structure (√2a, √2a, a) model for Mn3SnC, space group P4. We
label this magnetic structure model M1.
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isotherms of the sample and then calculated the magnetic
entropy change by using the Maxwell relation.30 As shown in
Figure 3b, the maximum value of −ΔSM is 11.42 J/kg K under
an applied field of 5 T. There is also an abnormal lattice
contraction of Mn3SnC near Tc, so that the lattice entropy
change will also contribute to the total entropy change. The
total entropy changes (ΔS) can be estimated using eq 1:
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where Cp, T, H, t, and dH/dt denote the heat capacity at
constant pressure, temperature, enthalpy, time, and heat flow,
respectively. As shown in Figure 4, the entropy changes
(ΔSmax) obtained for this transition are −39.8 J/kg K
(exothermic process) and 38.5 J/kg K (endothermic process)
on cooling and warming, respectively. This result reveals that
the magnetic entropy is much smaller than the total entropy.
Usually the magnetic entropy comes from the variation of the

ferromagnetic component. However, for Mn3SnC, the
ferromagnetic peak disappeared at 260 K. To pursue the origin
of the large magnetic entropy change, we tried to induce the
ferromagnetic state by applying magnetic field at 260 and 277

Figure 2. Neutron powder diffraction patterns of Mn3SnC. (a)
Nuclear peak fits at 300 K. (b) Nuclear and magnetic peaks fit at 15 K.
The crosses represent the experimental intensities (Iobs), the upper
solid line represents the calculated intensities (Icalc), and the lower
solid line is the difference between observed and calculated intensities
(Iobs − Icalc). The vertical bars mark the angular positions of the
nuclear and magnetic Bragg peaks. (c) The top solid line shows the
difference (Iobs − Icalc) generated by nuclear and magnetic fitting with
model M1 at 15 K. The bottom solid line shows the difference (Iobs −
Icalc) generated by the nuclear fitting only at 15 K, so that the magnetic
contributions are clearly visible.

Figure 3. (a) Temperature dependence of the magnetization M(T)
(FC, ZFC) at H = 0.01 T (left axis). The right axis shows the inverse
susceptibility as a function of temperature. (b) Magnetic field-induced
isothermal entropy change as a function of temperature for selected
applied magnetic fields.

Figure 4. Temperature dependence of the heat flow (right axis) and
entropy change (left axis) for Mn3SnC. (a) Warming, with ΔSmax =
38.5 J/kg K (endothermic process). (b) Cooling, with ΔSmax = −39.8
J/kg K (exothermic process).
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K. Figure 5 shows neutron diffraction patterns of Mn3SnC at
260 K under 0, 0.5, and 6 T, respectively. Each diffraction

pattern has been normalized to the zero field. The nuclear
peaks of aluminum foil, which was used to wrap the sample, are
also shown in Figure 5. All the aluminum nuclear peaks were
unchanged under different magnetic field, as expected. As
discussed above, the strongest ferromagnetic peak (1/2 1/2 0)
overlaps the nuclear peak (100). With increasing magnetic field
no significant change was found for this peak even under 6 T at
260 K, as shown in Figure 5. Hence no ferromagnetic
component was obtained for the above experimental
conditions. The refinement process further confirmed this
result. However, the intensity of all the antiferromagnetic peaks
under 0.5 T rose by about 45% as compared with the data
under 0 T. For higher applied fields the intensity of AFM peaks
changed very little up to 6 T. Identical results were obtained for
a temperature of 277 K. Figure 6 shows the refinement results
for the field dependence of the lattice parameter and magnetic

moment for Mn3SnC at 260 and 277 K. Both the
antiferromagnetic moment and lattice parameter increase with
increasing magnetic field. For the AFM moment, there is a
sharp increase at a small field of 0.5 T, and then it slowly
increases with further increase of field. The lattice parameter,
on the other hand, increases linearly with increasing field.
Figure 7a,b shows the isotherm magnetization curves M(H) of

Mn3SnC at 260 and 277 K, respectively. It can be seen from
Figure 7 that the magnetization has a sharp change below 0.5 T,
which corresponds with the neutron results. The maximum
magnetization of Mn3SnC is about M(H) = 15 emu/g (with 1
emu/g = 1 A m2/kg), which corresponds to ∼0.79 μB per
molecule at 5 T in Figure 7. For the FM component in
Mn3SnC, it is difficult to confirm such tiny changes from NPD
refinement. Since the magnetic field induces changes of both
the antiferromagnetic moment and lattice parameter, it is
important to confirm the relationship between the lattice and
antiferromagnetic state in this class of material.
On the basis of previous studies on Mn3−xCu0.5Ge0.5N and

Mn3ZnxN,
25,26 the quantitative relationship between the lattice

expansion and magnetic moment could lead to NTE behavior.
Thus we investigate the variation of the antiferromagnetic
moment and abnormal thermal expansion in Mn3SnC. Figure 8
shows the temperature dependence of both the lattice
parameter and magnetic moment of Mn3SnC. As the crystal
structure of Mn3SnC maintains the cubic structure in the whole
temperature range, the lattice parameter change is consistent
with the volume change. Negative thermal expansion was
observed in the temperature range of 275−290 K (ΔT = 15 K),
with a linear thermal expansion coefficient αl = ΔL/LΔT of αl1
= −4.6 × 10−5 K−1 in Mn3SnC. The NTE effect occurs during
the magnetic ordering transition process. The antiferromag-
netic ordered moment begins to increase, while the lattice
parameter jumps up at the transition. The ferromagnetic
moment component on the z = 0 plane of M1 is 0.25(46) μB at
270 K, indicating that the value is too small to detect. At lower

Figure 5. Neutron diffraction patterns of Mn3SnC at 260 K under 0,
0.5, and 6 T, respectively. The antiferromagnetic peak (0 1/2 0)AFM
and nuclear peaks (100)N and (110)N are magnified to show the
variations of the magnetic and lattice under magnetic field.

Figure 6. (a) Magnetic field dependence of the lattice parameter at
260 and 277 K. (b) Magnetic field dependence of the antiferro-
magnetic moment at 260 and 277 K.

Figure 7. The isotherm magnetization curves M(H) of Mn3SnC at (a)
260 K and (b) 277 K.
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temperature the value remains below 1.0 μB. The ferromagnetic
component on the z = 0.5 plane of M1 refines to 0.20(0.28) μB
at 80 K, again within experimental uncertainty of zero. For this
ferromagnetic component a nonzero value is observed below 80
K. In this instance, we deduce that the lattice is coupled with
the antiferromagnetic component on the z = 0.5 plane of M1 in
Mn3SnC. To validate this conclusion, we tune the magnetic
state and NTE behavior by doping and the introduction of
vacancies in the Mn3SnC lattice.
According to the NPD refinement results the crystal

structures of Mn3Sn0.95C0.9 and Mn3Sn0.93Si0.07C0.94 above the
magnetic ordering temperature are the same as Mn3SnC. The
magnetic moments and lattice variation of them are different
from that of Mn3SnC below the magnetic ordering temperature
(details will be discussed later). The lattice constants of
Mn3Sn0.95C0.9 and Mn3Sn0.93Si0.07C0.94 are 3.99083 Å and
3.99143 Å, respectively, at 300 K. Figure 9a shows the
magnetic structure of Mn3Sn0.95C0.9. We label this magnetic
model M2, which differs from M1 (Figure 1b) in that there is
not a ferromagnetic component on the z = 0.5 plane (Mn3) and
the spin direction of the Mn1 is antiparallel to that of Mn2. For
M1, the magnetic structure is ferrimagnetic; for M2, the
magnetic structure is purely antiferromagnetic.
Figure 9b shows the difference (Iobs − Icalc) of nuclear fitting

only (black) for Mn3Sn0.95C0.9 at 4 K, where the difference
peaks between the top line and bottom line are magnetic peaks.
For Mn3Sn0.95C0.9, the magnetic reflections appear to be
identical with Mn3SnC in Figure 2c. However, if we use the
magnetic model of Mn3SnC to fit the magnetic peaks of
Mn3Sn0.95C0.9, the refinement process does not converge. It was
found that the antiferromagntic components of Mn3Sn0.95C0.9
can be indexed using the magnetic superlattice model of
Mn3SnC, so that the factor that leads to the failure in the
refinement process is the ferromagnetic components. We
therefore used this model setting the ferromagnetic compo-
nents to zero (Figure 9a). The top solid line, in Figure 9b,
shows the difference (Iobs − Icalc) of nuclear and magnetic fitting
with model M2. The refinement converges rapidly and stably.
All the magnetic peaks can be fit well without any
ferromagnetic components. The antiferromagntic moments of
Mn3Sn0.95C0.9 are 2.36(4) μB on z = 0.5 plane and 1.4(1) μB on
z = 0 plane at 4 K.
For Mn3Sn0.93Si0.07C0.94, the magnetic reflections correspond

to the same propagation vector k = (1/2 1/2 0). If we consider
the ferrimagnetic structure based on M1, the ferromagnetic

component intensity can be fit with various spin configurations.
Both the ferrimagnetic structure and antiferromagnetic
structure can be used to fit the neutron data, indicating that
the (always small) ferromagnetic components are below our
detection limit. Therefore we use the antiferromagnetic model
in Figure 9a (M2) to estimate the antiferromagnetic
componen t . The ant i f e r romagn t i c moment s o f
Mn3Sn0.93Si0.07C0.94 are 2.57(5) μB on z = 0.5 plane and
1.6(1) μB on z = 0 plane at 5 K.
Figure 10a,b shows the temperature dependence of the

lattice parameter and magnetic moment for Mn3Sn0.95C0.9 and
Mn3Sn0.93Si0.07C0.94, respectively. Because of the cubic structure,
variations of the lattice parameters with temperature have a
similar correspondence to variations of the volumes in
Mn3Sn0.95C0.9 and Mn3Sn0.93Si0.07C0.94. We can see that the
antiferromagnetic moment and NTE behavior are changed
compared with that of Mn3SnC. Then by comparing Figure 10
to Figure 8 we can reveal the relationship between the
antiferromagnetic moment and lattice. In the NTE temperature
range, the antiferromagnetic moment can be fit with a linear
fitting method.

β= +T M TM( ) 0 (2)

where M0 is a constant and β is a scaling factor (β = ΔM/ΔT)
that indicates the rate of change of the magnetic moment with
temperature. For Mn3SnC, the NTE range can be divided into

Figure 8. Temperature dependence of the lattice parameter (left axis)
and ordered Mn moment in Mn3SnC, including the antiferromagnetic
moment on the z = 0.5 plane and the ferromagnetic moment on the z
= 0 plane (right axis).

Figure 9. (a) Magnetic structure (√2a, √2a, a) of Mn3Sn0.95C0.9,
space group P4. We label this magnetic structure model M2. (b) (Iobs
− Icalc) neutron powder diffraction pattern for Mn3Sn0.95C0.9 at 4 K.
(red) Nuclear and magnetic fits with magnetic model M2. (black)
Nuclear fit only.
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two areas with different β values: β1′ = ΔM1/ΔT = −0.05 μB/K
in the range of 275−280 K, and the β1″ = ΔM1′/ΔT ≈ −∞
(arctan(β1″) ≈ − π/2) in the range of 280−290 K. For the
whole NTE range, we can use the average value β1 between the
β1′ and β1″ to indicate the rate of change of the magnetic
moment. We obtain the relation of β1′ < β1 < β1″.
For Mn3Sn0.95C0.9, the linear thermal expansion coefficient

αl2 of the NTE is −2.234 × 10−5 K−1 for the temperature range
of 260−285 K (ΔT = 25 K). There are two antiferromagnetic
components on the z = 0 and z = 0.5 planes of theM2 magnetic
model, respectively. The variation of the antiferromagnetic
moment on the z = 0.5 plane is consistent with that of the cubic
lattice constant. The other antiferromagnetic component (z = 0
plane) is independent of the NTE behavior. Hence we use eq 2
to fit the variation of the AFM moment (z = 0.5 plane),
yielding β2 = ΔM2/ΔT = −0.05 μB/K in the NTE range.
For Mn3Sn0.93Si0.07C0.94, Si substitution for Sn dramatically

changes the thermal expansion properties of Mn3SnC.
Mn3Sn0.93Si0.07C0.94 exhibits nearly ZTE, with αl3 = 5.190 ×
10−7 K−1 for the temperature range of 240−270 K (ΔT = 30K).
The variation of the antiferromagnetic moment on the z = 0
plane for the M2 magnetic model is similar to that of
Mn3Sn0.95C0.9 and is independent of the lattice variation. We
use eq 2 to fit the AFM moment (z = 0.5 plane), the rate of
change of the AFM moment with temperature β3 = ΔM3/ΔT =
−0.017 μB/K in the temperature range of 240−270 K.
On the basis of the above discussion, we find a close

relationship between the abnormal thermal expansion and the
rate of change of the antiferromagnetic moment on the z = 0.5
plane: as to the variation of AFM moment, we obtained −β1 >
−β2 > −β3, while for the linear thermal expansion coefficients
we found −αl1 > −αl2 > −αl3. This relationship reveals that the

magnitude of the abnormal thermal expansion is controlled by
the rate of change of the AFM moment. For all three samples,
as |β| gradually decreases, we realize nearly ZTE behavior in
Mn3Sn0.93Si0.07C0.94. To clarify this transition, we can use the
magnetic moment derivative dM/dT and the lattice constant
derivative da/dT to display the discontinuous process. Figure
11 shows the result.

For Mn3Sn1‑εSiεC1‑δ, normal positive thermal expansion
(PTE) is observed at low temperature. We can use the
quadratic function to fit the PTE behavior.

= + +a T a T b T C( ) 0
2

0 0 (3)

where a(T) is lattice parameter at temperature T and a0, b0, and
c0 are constants. On the basis of eq 3, the rate of change of the
lattice constant with respect to temperature can be described
as:

= +a T a T bd /d 2 0 0 (4)

Note that da/dT is a linear function with respect to
temperature T. If no magnetic field is applied, the slope 2a0
of the line is a constant. However, coupling between the
magnetic order and the lattice will change, providing a strong
correlation between da/dT and dM/dT. We can see that dM/

Figure 10. (a,b) Temperature dependence of the lattice parameter and
ordered Mn moment in Mn3Sn1−εSiεC1−δ compounds. (a)
Mn3Sn0.95C0.9, antiferromagnetic moment on the z = 0.5 plane, z =
0 plane (right axis) and lattice parameter (left axis). (b)
Mn3Sn0.93Si0.07C0.94, antiferromagnetic moment on the z = 0.5 plane,
z = 0 plane (right axis) and lattice parameter (left axis).

Figure 11. (a,b,c) Lattice parameter derivative (da/dT) and magnetic
moment derivative (dM/dT) for the three samples. (a) Mn3SnC. (b)
Mn3Sn0.95C0.9. (c) Mn3Sn 0.93Si0.07C0.95.
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dT exhibits the same tendency as the da/dT function in Figure
11.
This result provides experimental evidence for the common

assumption that the lattice is closely related to the magnetism
in this class of compounds. We note that, in the range where
the lattice and magnetic order are strongly coupled, the rates of
change of the magnetic moment and the linear thermal
expansion coefficient of Mn3Sn0.93Si0.07C0.94 are smaller than
they are for the other two compounds. When the contribution
of the magnetic order to the lattice expansion cancels that from
the conventional anharmonic lattice vibration, we obtain ZTE
behavior in Mn3Sn0.93Si0.07C0.94.
Vacancies and doping do not significantly change the

magnetic structure in Mn3Sn1−εSiεC1−δ compounds, in contrast
to the Mn3ZnxN

26 and Mn3Cu1−xGexN
22−24 systems. The

difference in behavior may be closely associated with the
electronic states near the Fermi level. P. Tong et al.31 studied
the local structure of Mn3Cu1−xSnxN via neutron diffraction
and the neutron pair distribution function (PDF) technique.
They pointed out that if the compounds have more p electrons
(e.g., Sn, Ge), the strong p−d hybridization would stabilize the
Γ5g magnetic configuration,31 and the Γ5g magnetic structure
has a close relationship with the NTE in these compounds. For
the Γ5g magnetic sturcture with propagation vector k = (0 0 0),
there are no superlattice peaks, and the crystal and magnetic
structures have the same primitive unit cell. However, the stable
square antiferromagnetic structure shown in Figures 1b and 9a
is a key factor to produce NTE/ZTE in Mn3Sn1−εSiεC1−δ. For
this magnetic structure with k = (1/2 1/2 0), there are
superlattice magnetic peaks at low temperature and the
magnetic unit cell is a superlattice cell. With this structure,
the rate of change of the magnetic moment controls the NTE/
ZTE, and vacancies and doping adjust the variation of the
magnetic moment. We can thereby control the NTE/ZTE by
introducing vacancies and/or doping in Mn3Sn1−εSiεC1−δ. The
NTE behavior is related to the lattice entropy in Mn3SnC, and
we can tune the lattice entropy by introducing vacancies and
doping in Mn3Sn1−εSiεC1−δ. In addition, magnetic field also can
change the antiferromagnetic moment and lattice parameter in
Mn3SnC, which means we might be able to control the lattice
entropy by magnetic field. These results provide a possibility to
extract the lattice entropy in this class of materials.

■ CONCLUSIONS

In summary, the NTE effect in this system is related to a
commensurate (square) AFM state, and we have obtained a
quantitative relationship between the rate of change of the
AFM moment (β = ΔM/ΔT) and the linear thermal expansion
coefficient (αl = ΔL/LΔT) to produce NTE/ZTE in
Mn3Sn1−εSiεC1−δ. The magnetic entropy only accounts for
∼29% of the total entropy associated with the magnetic/
structural phase transition in Mn3SnC. The lattice entropy is
related to the NTE, which can be tuned by magnetic field. The
research presented here provides further clues to not only
design zero thermal expansion materials but also to control the
lattice entropy in this class of materials.
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